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We study coupled oscillator spin systems on sparse, random graphs. In particular, we examine the recent
conjecture of Ichinomiya on the equivalence of a sparsely connected oscillator network with ferromagnetic
interactions to a fully connected network with disordered �i.e., randomly quenched� interactions. By restricting
our investigation to a Hamiltonian case we can use the techniques of equilibrium statistical mechanics to
compare these two models analytically including phase diagrams and the calculation of order parameters in the
ordered phase. We complete our investigation by performing some Monte Carlo simulations to compare our
theoretical predictions against.
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I. INTRODUCTION

In recent years, much attention has been paid to large,
multiparticle interacting systems where the interaction topol-
ogy is described by a sparse random network �1–4�. By this
we mean that each node or variable in the network interacts
with a random subset of other nodes which is much smaller
than the system size, and generally finite even in the infinite
system size limit.

This current enthusiasm has been fueled by an abundance
of systems �e.g., social networks �5�, biological networks
�6,7�, neural networks �8�, error-correcting codes �9�, and
optimization problems �10,11�� whose interactions are of this
sparse, random type. The Kuramoto model �12� of coupled
phase oscillators has provided a wealth of interesting models
�13� describing synchronization phenomena. One important
question has been how the topology of the network influ-
ences synchronization �14� which has been investigated us-
ing both numerical and theoretical techniques �15–18�. A re-
cent paper by Ichinomiya �19� shed some light on this issue.
By using the path-integral formalism �20,21� he was able to
develop a link between a sparse random network of coupled
oscillators with uniform interactions and a globally coupled
�i.e., mean-field-type all-to-all interactions between the oscil-
lators� network with quenched random interactions. This re-
sult can be seen heuristically by the method of moments
which we describe briefly in Sec. II, although Ichinomiya
showed it via an expansion in the average connectivity. The
expansion and link between the two models was tested in
�19� by the use of Monte Carlo techniques specifically look-
ing at the Kuramoto transition. Our main result is showing
that by restricting ourselves to a Hamiltonian system of
coupled oscillators we can solve both the sparse random net-
work �along the lines of �17,18�� and the fully connected
random interaction network �along the lines of, e.g., �22,23�
or see �24� for a more complete introduction to the replica

theory�. Since we have an analytic solution to these models
we are able to compare them at a higher degree of resolution
than simulations are able to provide, to see how well the
fully connected �and hence simpler� system agrees with the
sparse system and to quantify the magnitude of any differ-
ence in, e.g., the transition temperatures or the order param-
eters in the ordered phase �where the oscillators are entrained
into one overall cycle� �25�. In particular, we show that in the
two systems the transition temperature between entrained
and disordered �paramagnetic� phases agree asymptotically
as the connectivity parameter tends to infinity, whereas the
behaviors are quite different for smaller values of the con-
nectivity parameter. A spin-glass �disordered� low-
temperature phase exists only in the fully connected system.
In other words, Ichinomiya’s conjecture holds asymptotically
but is not exact for oscillators with a finite number of neigh-
bors.

We define the two models in Sec. II and give a brief
mean-field argument as to why they should behave similarly,
in Sec. III we use replica theory to solve the fully connected
network of oscillators and in Sec. IV we use the cavity ap-
proach to solve the sparse network of oscillators. We com-
pare and contrast the two solutions in Sec. V showing some
results of our analysis and some simulation results.

II. MODEL DEFINITIONS

We study a system of N coupled phase oscillators as in-
troduced by Kuramoto �12�. In this model, each oscillator
has a definite amplitude, and the state of a given oscillator is
described by its phase ��R. The evolution equation for the
phase �i of the ith oscillator is given by

d

dt
�i = �i + �

j�i

Jij sin�� j − �i� + �i, �1�

where �i�t� is the Gaussian white noise process with variance
2T,
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��i�t�� j�t��� = 2T�ij��t − t�� . �2�

The solution of the model �1� in the thermodynamic limit
�i.e., as N→�� will, of course, depend to a great extent on
the values taken by ��i ,Jij	, or on their statistics if they are
taken to be random variables, and is generally a highly non-
trivial problem, although progress has been made in some
cases, e.g., �26�.

The archetypal sparse random network is the Erdös-Rényi
random graph. For uniform ferromagnetic interactions be-
tween the spins a graph of this type can be generated by
specifying

model ER, P�Jij� =
c

N
�Jij,1

+ 
1 −
c

N
��Jij,0

∀ i � j ,

�3�

where c is a finite constant and the interactions are taken to
be symmetric. In the large system limit each oscillator is
connected to a random number of other oscillators, this num-
ber is a Poisson distributed random variable with parameter
c. So, the average number of oscillators it is connected to is
c and the variance of the number is also c. As c increases, the
Poisson �c� distribution is increasingly well approximated by
a Gaussian distribution with mean c and variance c �with the
distribution being totally specified by its mean and variance�.
Thus, along the lines of a mean-field-type argument we can
write the following:

��
j�i

Jij sin�� j − �i�
 � �
j�i

�Jij��sin�� j − �i�� �4�

=
c

N
�
j�i

�sin�� j − �i�� . �5�

Hence, the average field due to ferromagnetic connections
with c other oscillators is replaced by a connection of
strength c /N with all the other oscillators. Similarly, the fluc-
tuations given by a differing number of connections per os-
cillator �according to the Poisson distribution� can be re-
placed by a disordered interaction with all other oscillators,

model FC, Jij =
c

N
+� c

N
zij ∀ i � j , �6�

where zij �N�0,1�. This satisfies �� jJij�=c and var�� jJij�
=c. So the first two moments of the interactions for the fully
connected �FC� model agree with those for the Erdös-Rényi
�ER� random graph model. We have included the above ar-
gument on the relationship between the two models for com-
pleteness, for a more detailed analysis using perturbation
theory applied within the path-integral formalism we refer
the interested reader to �19�.

Given the definition of the interactions �3� or even �6� the
exact analysis of �1� is still a challenging problem. In this
paper, in order to reach an analytical result, in the following
we restrict ourselves to the case where �i=� for any i. Then,
without loss of generality, we may assume �=0. Then Eq.
�1� can be rewritten as

d

dt
�i = −

�

��i
H + �i, �7�

H��� = − �
i�j

Jij cos��i − � j� . �8�

Thus, the specification of a homogeneous driving force �
allow the model to be written as a Hamiltonian system. In
the following two sections we use the techniques of equilib-
rium statistical mechanics and find analytic solutions to the
equilibrium behavior of these two models so that they can be
compared in Sec. V.

III. FULLY CONNECTED COUPLED OSCILLATOR
NETWORK

Models of the form �7� and �8� subject to the definition �6�
have been studied for some time �22,24� using the replica
approach so we will only outline the method of solution. The
replica approach allows one to calculate the disorder-

averaged free energy per spin f̄ =−limN→���N�−1ln Z for
model FC. It is given by

f̄ = − lim
N→�

lim
n→0

��Nn�−1 ln � d�1
¯ d�ne−��	H��	�, �9�

where �	= ��1
	 , . . . ,�N

	�, 	=1, . . . ,n, and H is defined in �8�
with the interactions �Jij	 specified by �6�. The averages over
the quenched disorder variables �Jij	 now amount to per-
forming Gaussian averages. These can be performed with the
resultant free energy being expressed as a saddle-point inte-
gral, thus it is given as an extremum,

f̄ = − lim
N→�

lim
n→0

��n�−1 extr�
 + �� , �10�


 = i�
	

�m̂c
	mc

	 + m̂s
	ms

	� + i �
	��

�q̂cc
	�qcc

	� + q̂ss
	�qss

	� + q̂cs
	�qcs

	��

+
c�

2 �
	

��mc
	�2 + �ms

	�2�

+
d�2

4 �
	�

��qcc
	��2 + �qss

	��2 + �qsc
	��2 + �qcs

	��2� , �11�

� = ln � d�e−i�	�m̂c
	 cos��	�+m̂s

	 sin��	��−i�	���q̂cc
	� cos��	�cos����+q̂ss

	� sin��	�sin����+q̂cs
	� cos��	�sin�����. �12�

Assuming that the above saddle point is replica symmetric, rotating variables in the complex plane and eliminating superfluous
order parameters, the disorder-averaged free energy per spin can be written in the more compact form,
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f = −
c�

4
�qcc

2 + qss
2 + 2qsc

2 − 1� −
c

2
�mc

2 + ms
2� −

c�

2
�Qcc�Qcc − 1� + Qsc

2 � +
1

�
� DxDy ln � d
M�
�x,y� �13�

with the effective measure

M�
�x,y� = ec�mc cos�
�+c�ms sin�
�+�1/2�c�2�Qcc−qcc�cos2�
�+�1/2�c�2�1−Qcc−qss�sin2�
�

� ec�2�Qsc−qsc�sin�
�cos�
�+�x�c�qccqss−qsc
2 �/qsscos�
�+�y�c��qsc/�qss�cos�
�+�qsssin�
��. �14�

The order parameters themselves must be solved from the
self-consistent equations

mc = ��cos�
���, ms = ��sin�
��� ,

Qcc = ��cos2�
���, Qsc = ��cos�
�sin�
��� ,

qcc = ��cos�
��2�, qss = ��sin�
��2� ,

qsc = ��sin�
���cos�
��� , �15�

where the averages in the above equations are given by

�¯� =� DxDy ¯ , �16�

�¯� =
� d
M�
�x,y�¯

� d
M�
�x,y�
. �17�

One of the interesting characteristics of the model is the
phase diagram, which can be explored by locating the critical
temperature using a bifurcation analysis. In the high-
temperature phase �→0 we have mc=ms=0 and qcc=qss

=qsc=Qsc=0 while Qcc= 1
2 . The orthogonality of our order

parameters �when integrated over �0,2��� is useful as the
bifurcation matrix is diagonal and thus the correct result is
obtained by considering each order parameter term by term.
The magnetization terms are straightforward as we find by
expanding for small mc ,ms that

mc = ��cos�
��� =� d


2�
cos�
��c�mc cos�
�� =

c�

2
mc

�18�

and as the calculation for ms is identical the critical tempera-
ture Tmc

=Tms
=c /2. Now, TQcs

follows similarly via

Qcs = ��cos�
�sin�
���

=� d


2�
cos�
�sin�
��c�2Qcs sin�
�cos�
��

=
c�2

8
Qcs �19�

which gives TQcs
=�c /8. Further, qcc can also be found along

similar lines,

qcc = ��cos�
��2�

=� DxDy
� d


2�
cos�
��1 + �x�dqcc cos�
�

+ y�cqss sin�
� + ¯ ��2

=
�2cqcc

4
�20�

and �as qss and qcs follow similarly� gives Tqcc
=Tqss

=�c /2.
Our analysis leads to the conclusion that the critical tem-

peratures for P→F and P→SG transitions are

P → F, T =
c

2
, �21�

P → SG, T =
�c

2
, �22�

note that the latter agrees with �22� �once we identify J̃2 from
their paper with c�. For all c�1 we enter a ferromagnetic
phase at low temperatures �this is consistent with the perco-
lation transition for model ER—below c=1 there can be no
macroscopically ordered phase�. However, for c�1 we have
a spin-glass low-temperature phase in model FC �i.e., for
T�0.5� which cannot correspond at all to any state in a
uniform bond dilute network of coupled oscillators.

IV. COUPLED OSCILLATOR NETWORK ON A RANDOM
GRAPH

Models of the form �7� and �8� subject to the definition �3�
have only been solved analytically relatively recently �17,18�
�to which the reader can refer for more detailed solutions of
the present model� due to the increased complexity of the
analysis when each node of the network is only connected to
a finite number of neighbors. This complexity manifests it-
self via the order parameters: Rather than having a few pa-
rameters that can fully characterise the system as in Sec. III,
the self-consistent order parameter equations are written in
terms of a disorder-averaged measure over probability distri-
butions of individual oscillators,
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W��P	� = lim
N→�
� 1

N
�

i

Pi��i�
 . �23�

Thus, rather than having to solve for several parameters we
have to solve for a measure over distributions, an altogether
more complicated object. To see how this arises, we again
invoke the replica method to calculate the disorder-averaged
free energy as

f̄ = lim
n→0

1

�n

 1

2c
� d�d
P���P�
��e��	 cos��	−
	� − 1�

− ln � d�P���ec�
P�
��e��	 cos��	−
	�−1�� , �24�

where � and 
 are both n-replicated vectors and the measure
P is to be found from the self-consistent equation

P��� =
1

N
ec�d
P�
�e��	 cos��	−
	�

, �25�

where N is just a normalization constant. The free energy in
the above form is somewhat intractable and to make progress
we require the usual replica-symmetric ansatz, which for the
present model takes the form �18�

P��� =� �dP	W��P	��
	

P��	� �26�

which if we compare to the definition �23�, we see that we
can interpret the replica-symmetric ansatz as saying that the
marginal equilibrium distribution for a given oscillator is the
same in all replicas of the system �which is quite intuitive—
since replica symmetry is normally closely linked to ergod-
icity and hence independence of initial system conditions
�24��. Algebraically, the ansatz �26� allows one to take the
limit n→0 giving the replica-symmetric disorder-averaged
free energy f as

f =
c

2�
� dP1dP2W�P1�W�P2�ln � d�1d�2P1��1�P2��2�e� cos��1−�2�

− �−1�
k�0

e−cck

k!
� 
�

�=1

k

dP�W�P���ln � d��
�=1

k

d��P����e��� cos��−���, �27�

where the measure W�¯� is found from the self-consistent
equation

W�P� = �
k�0

e−cck

k!
� �

1���k

dP�W�P���F

�
P��� −
1

N�
�
� d��P�����e� cos��−���� ,

�28�

where �F�¯� is a � functional, returning zero when inte-
grated over unless the argument is zero for the whole range
of � �except perhaps on sets of measure zero�. Apart from in
certain special cases �e.g., in the paramagnetic phase� is not
clear how to treat the equation above analytically. However,
a population dynamics approach can be used, with each
member of the population somehow encoding a given distri-
bution P, and the population as a whole converging towards
W as both the size and the number of iterations of the dy-
namics increase.

The phase transitions of model ER can be found by first
noting that W�P�=�F�P���− 1

2� � is a solution of �28� corre-
sponding to the high-temperature, paramagnetic state where
the oscillators have no overall, nor individual alignment.
Continuous transitions away from this state can be found
using the so-called Guzai expansion �18� which is in essence

perturbation expansion around the paramagnetic solution in
small functions ���� �i.e., one assumes that the magnitude of
range of � is small�—P���= 1

2� +����. Insertion of this an-
satz into �28� and ignoring terms of second order or higher in
� leads to the conclusion that an ordering transition in the
oscillators away from the paramagnetic state occurs at

1 =
cI1���
I0���

, �29�

where In��� is the nth modified Bessel function, In���
=�0

2� d�
2� cos�n��ez cos���. Note that there is no spin-glass tran-

sition in this model, which is not surprising since there is no
quenched bond disorder in the model �although there is
quenched dilution disorder—the bonds are all positive, lead-
ing to forces tending to encourage synchronization, although
any particular graph realization, out of the possible ensemble
or random, dilute graphs, is random�.

V. COMPARISON OF THE TWO MODELS

One could ask a variety of questions about how similar
the two models we have considered are. We restrict ourselves
to two main comparisons: What is the difference in the phase
diagrams of model ER and model FC; and, how does the
degree of synchronization compare between these two mod-
els in the ordered phase.
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In Fig. 1 we see the phase diagram of both models. Com-
parison of Eq. �21� with Eq. �29� shows that the transitions
are not coincident, although an expansion for large c shows
that they are in leading order. Indeed, even for values of c of
order 1, the discrepancy between the transition temperatures
is not very large, and would not necessarily be obvious from
simulations except for quite large system sizes. Thus, not
only do we see the agreement predicted by �19� but we can
also measure quantitatively the degree of disagreement be-
tween the two models.

In Fig. 2 we show the value of a synchronization order
parameter m=�mc

2+ms
2 where mc and ms are defined in Eq.

�15� as we vary the temperature, for two different values of
the connectivity. Again, as one would expect, the agreement
between the models improves for larger values of c, and, as
one may also expect, the disagreement is worst near the tran-
sition temperature where fluctuations and correlations will be
largest. In Fig. 2, we display results by numerical simula-
tions, too. The agreement between theoretical and numerical
results is fairly well.

VI. CONCLUSION

In this paper we have investigated the similarity and dif-
ferences of two different models for coupled oscillators with
long-range coupling. The relationship between these models

was pointed out by Ichinomiya �19� using path-integral
analysis �21�. Ichinomiya having found this connection ana-
lyzed it using simulation techniques. This identity between
the models is important due to the prevalence of random-
graph-type network models in a variety of disciplines and the
importance of the Kuramoto model in describing synchroni-
zation phenomena. We have sought to further the understand-
ing of the relationship between these models, and the size
and nature of disagreements between them by looking at a
particular case where both models can be solved analytically,
namely when they are both in equilibrium. This has allowed
us to compare their phase diagrams and the value of synchro-
nization order parameters in the ordered phase. This clarifies
the parameter region where the two models behave differ-
ently. In particular, when c is less than 1, a spin-glass low-
temperature phase appears for the fully connected system. In
contrast, the sparsely connected system does not percolate
for c less than 1 and so the equilibrium state is the paramag-
netic phase for the sparsely connected system.

ACKNOWLEDGMENT

The authors are grateful to A. C. C. Coolen for valuable
discussions.

�1� S. Dorogovtsev and J. F. F. Mendes, Evolution of Networks:
From Biological Nets to the Internet and WWW �Oxford Uni-
versity Press, Oxford, 2003�.

�2� Handbook of Graphs and Networks: From the Genome to the

Internet, edited by S. Bornholdt and H. Schuster �Wiley-VCH,
New York, 2002�.

�3� M. E. J. Newman, SIAM Rev. 45, 167 �2003�.
�4� B. Bollobás, Modern Graph Theory �Springer, New York,

0

5

10

15

20

25

0 2 4 6 8 10

T

c

F

P

0

1

2

3

4

0 0.2 0.4 0.6 0.8 1 1.2

T

c

F

P

SG

(a)

(b)

FIG. 1. �a� Phase diagram in T-c plane. Solid curve: Sparse
model �model ER�. Dotted curve: Fully connected model �model
FC�. �b� Enlargement of �a�.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2

T

m

0

0.2

0.4

0.6

0.8

1

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2

T

m

(a)

(b)

FIG. 2. T dependence of m. �a� c=2; �b� c=5. Curves; theoret-
ical results. Symbols, numerical results of the Langevin equation
�1� for N=2000. Solid curve and plus symbol, sparse model �model
ER�; dashed curve and cross, fully connected model �model FC�.

MEAN FIELD AND CAVITY ANALYSIS FOR COUPLED… PHYSICAL REVIEW E 78, 036106 �2008�

036106-5



1998�.
�5� D. Watts and S. Strogatz, Nature �London� 393, 440 �1998�.
�6� R. A. Z. O. H. Jeong, B. Tombor, and A.-L. Barabási, Nature

�London� 407, 651 �2000�.
�7� T. Uezu, C. Kadono, J. P. L. Hatchett, and A. C. C. Coolen,

Prog. Theor. Phys. Suppl. 161, 385 �2006�.
�8� B. Wemmenhove and A. Coolen, J. Phys. A 36, 9617 �2003�.
�9� R. Vicente, D. Saad, and Y. Kabashima, Phys. Rev. E 60, 5352

�1999�.
�10� A. Hartmann and M. Weigt, Phase Transitions in Combinato-

rial Optimization Problems �Wiley-VCH, Berlin, 2006�.
�11� M. Mézard, G. Parisi, and R. Zecchina, Science 297, 812

�2002�.
�12� Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence

�Springer-Verlag, Berlin, 1984�.
�13� J. A. Acebrón, L. L. Bonilla, C. J. Vicente, F. Ritort, and R.

Spigler, Rev. Mod. Phys. 77, 137 �2005�.
�14� A. Arenas, A. Diaz-Guilera, and C. J. Perez-Vicente, Phys.

Rev. Lett. 96, 114102 �2006�.
�15� B. J. Kim, H. Hong, P. Holme, G. S. Jeon, P. Minnhagen, and

M. Y. Choi, Phys. Rev. E 64, 056135 �2001�.

�16� H. Hong, M. Y. Choi, and B. J. Kim, Phys. Rev. E 65, 047104
�2002�.

�17� N. S. Skantzos, I. P. Castillo, and J. P. L. Hatchett, Phys. Rev.
E 72, 066127 �2005�.

�18� A. C. C. Coolen, N. S. Skantzos, I. P. Castillo, C. J. Perez-
Vicente, J. P. L. Hatchett, B. Wemmenhove, and T. Nikoleto-
poulos, J. Phys. A 38, 8289 �2005�.

�19� T. Ichinomiya, Phys. Rev. E 72, 016109 �2005�.
�20� P. C. Matrin, E. Siggia, and H. Rose, Phys. Rev. A 8, 423

�1973�.
�21� C. DeDominicis, Phys. Rev. B 18, 4913 �1978�.
�22� S. Kirkpatrick and D. Sherrington, Phys. Rev. B 17, 4384

�1978�.
�23� A. C. C. Coolen and C. J. Perez-Vicente, J. Phys. A 36, 4477

�2003�.
�24� M. Mézard, G. Parisi, and M. Virasoro, Spin-Glass Theory and

Beyond �World Scientific, Singapore, 1987�.
�25� J. Hatchett and T. Uezu, Proceedings of the 2007 IEEE Sym-

posium Series on Computational Intelligence �FOCI’07�, 2007,
p. 169.

�26� H. Daido, Phys. Rev. Lett. 68, 1073 �1992�.

JONATHAN P. L. HATCHETT AND TATSUYA UEZU PHYSICAL REVIEW E 78, 036106 �2008�

036106-6


